Math 10A
Worksheet, Final Review; Thursday, 8/9/2018
Instructor name: Roy Zhao

1 Review Topics

1.1 Differentiation

- Domain/Range of functions
- Function transformations (Draw $f(2 x+3)$)
- Limits
- Infinite limits
- L'Hopital's Rule
- Tangent Lines
- Tangents to inverse functions
- Derivatives
- Product Rule, Quotient Rule
- Chain Rule
- Implicit Differentiation
- Graphing Functions
- Local extrema
- Global extrema
- Critical points
- Concavity
- Second Derivative Test
- Optimization
- Related Rates
- Taylor Series
- Newton's Method

1.2 Integration

- Antiderivatives
- Fundamental Theorem of Calculus I and II
- Substitution Rule
- Integration by Parts
- Symmetry
- Numerical integration
- Left/Right/Midpoint/Trapezoid/Simpson's Rule
- Error Bounds
- Improper Integrals
- Convergence Test
- Partial Fractions

1.3 Differential Equations

- Recurrence Relations
- Going both forward and backward
- Verifying solutions
- Identifying the adjectives (linear, homogeneous, etc.)
- Integrating Factors
- Separable Equations
- Second order differential equations
- Going forward and backward
- IVPs/BVPs
- Slope fields
- Euler's Method
- Logistic Growth
- Linear systems of differential equations

1.4 Matrices

- Multiplying matrices, vectors
- Determinants
- Number of solutions and how it depends on the determinant
- Gaussian Elimination
- Finding Inverses
- Solving matrix-vector equations
- Eigenvalues/eigenvectors
- Linear Regression
- Least Squares Error
- Finding line of best fit

2 Recurrence Relations and 2nd order Differential Equations

1. TRUE False It is possible for an IVP to have a unique solution.
2. TRUE False It is possible for a BVP to have a unique solution.
3. True FALSE It is possible for an IVP to have infinitely many solutions.
4. TRUE False It is possible for a BVP to have infinitely many solutions.
5. Solve the recursion equation $a_{n}=2 a_{n-2}-a_{n-1}$ with the initial conditions $a_{0}=0, a_{1}=3$.

Solution: The characteristic equation is $\lambda^{2}=2-\lambda$ or $\lambda^{2}+\lambda-2=(\lambda+2)(\lambda-1)=0$ so $\lambda=1,-2$ are the roots. Therefore, the general solution is $c_{1}(1)^{n}+c_{2}(-2)^{n}$ or $c_{1}+c_{2}(-2)^{n}$. The initial conditions give $c_{1}+c_{2}=0$ and $c_{1}-2 c_{2}=3$. Adding twice the first to the second gives $3 c_{1}=3$ so $c_{1}=1, c_{2}=-1$. Therefore, the solution is $1-(-2)^{n}$.
6. Verify that $y_{1}(t)=t$ and $y_{2}(t)=t^{3}$ are solutions to the differential equation $t^{2} y^{\prime \prime}(t)-$ $3 t y^{\prime}(t)+3 y(t)=0$. Find the solution to the differential equation with $y(1)=2$ and $y^{\prime}(1)=4$ (hint: what kind of differential equation is this?).

Solution: We plug in t and t^{3} and show that we get an equality. Since this is a homogeneous linear polynomial, linear combinations of solutions are also solutions so $c_{1} t+c_{2} t^{3}$ is the general solution. Plugging in the initial condition gives $c_{1}+c_{2}=2$ and $c_{1}+3 c_{2}=4$ so $c_{1}=c_{2}=1$. Therefore, the solution is $y(t)=t+t^{3}$.
7. Find all solutions to the BVP $y^{\prime \prime}+2 y^{\prime}+5 y=0$ with $y(0)=0$ and $y(\pi)=0$.

Solution: The characteristic equation is $\lambda^{2}+2 \lambda+5=0$ so the roots are $\lambda=-1 \pm 2 i$. Therefore, the general solution is $c_{1} e^{-t} \sin (2 t)+c_{2} e^{-t} \cos (2 t)$. Now plugging in the initial conditions give $c_{2}=0$ and $c_{2} e^{-\pi}=0$ or $c_{2}=0$. Therefore, the solution is $y(t)=c_{1} e^{-t} \sin (2 t)$ and there are infinitely many solutions.
8. Find all solutions to the BVP $y^{\prime \prime}-5 y^{\prime}+6 y=0$ with $y(0)=2$ and $y(1)=e^{2}+e^{3}$.

Solution: The characteristic equation is $\lambda^{2}-5 \lambda+6=(\lambda-2)(\lambda-3)=0$. So the roots are $\lambda=2,3$ and the general solution is $y(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$. Plugging in the initial conditions give $c_{1}+c_{2}=2, c_{1} e^{2}+c_{2} e^{3}=e^{2}+e^{3}$ so $c_{1}=c_{2}=1$. Therefore, the unique solution is $y(t)=e^{2 t}+e^{3 t}$.
9. Solve the initial value problem $3 y^{\prime \prime}+18 y^{\prime}+27 y=0$ with $y(0)=0, y^{\prime}(0)=1$.

Solution: We guess the solution is of the form $y=e^{r t}$. Plugging this in gives $3 r^{2} e^{r t}+18 r e^{r t}+27 e^{r t}=23 e^{r t}\left(r^{2}+3 r+9\right)=0$ and hence $(r+3)^{2}=0$ so $r=-3$ is a double root. Therefore, the general solution is of the form $y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$. Plugging in our initial conditions gives $y(0)=0$ or $0=c_{1} e^{0}+c_{2}(0)\left(e^{0}\right)=c_{1}$ and $y(t)=c_{2} t e^{-3 t}$ and $y^{\prime}(t)=c_{2} t\left(-3 e^{-3 t}\right)+c_{2} e^{-3 t}$ and plugging in $y^{\prime}(0)=1$ gives $c_{2}(0)+c_{2}(1)=c_{2}=1$ so the solution is $y(t)=t e^{-3 t}$.
10. Solve the initial value problem given by $2 y^{\prime \prime}=3 y^{\prime}-y$ and $y(0)=0$ and $y^{\prime}(0)=1$.

Solution: We bring all the y^{\prime} 's to one side and get $2 y^{\prime \prime}-3 y^{\prime}+y=0$ and our characteristic equation is $2 r^{2}-3 r+1=(2 r-1)(r-1)=0$ so $r=1 / 2,1$. So the solution is of the form $y(t)=c_{1} e^{t / 2}+c_{2} e^{t}$. Plugging in the initial conditions gives $y(0)=c_{1}+c_{2}=0$ and $y^{\prime}(0)=c_{1} / 2+c_{2}=1$ which solving gives $c_{2}=2$ and $c_{1}=-2$. Therefore the solution is $y(t)=-2 e^{t / 2}+2 e^{t}$.
11. Find a second order differential equation IVP that has $t e^{t}$ as a solution.

Solution: Since $t e^{t}$ is a solution, the t in front tells us that there is a double root and the e^{t} tells us that $\lambda=1$ is a root. Therefore, the roots are $\lambda=1,1$. So the characteristic equation is $(\lambda-1)(\lambda-1)=\lambda^{2}-2 \lambda+1=0$. So the differential equations is $y^{\prime \prime}-2 y^{\prime}+y=0$. The conditions are $y(0)=0 e^{0}=0, y^{\prime}(0)=t e^{t}+\left.e^{t}\right|_{t=0}=$ $0 e^{0}+e^{0}=1$.
12. Find a second order differential equation BVP that has $e^{2 t} \sin (t)$ as a solution.

Solution: Since we have sin, we know that there are complex roots so the roots are $\lambda=a \pm b i$. The a is the exponent of $e^{2 t}$ so $a=2$ and b is in the sin or \cos so $b=1$. Therefore, $\lambda=2 \pm i$ are the roots. So the characteristic equation is $(\lambda-(2-i))(\lambda-(2+i))=0$ or $\lambda^{2}-4 \lambda+5=0$. Therefore, the differential equation is $y^{\prime \prime}-4 y^{\prime}+5 y=0$.

The initial conditions is a boundary value so we could take $y(0)=e^{0} \sin (0)=0$ and $y(1)=e^{2} \sin (1)$.
13. Find the second order linear ODE such that $y(t)=t e^{2 t}$ is a solution to it.

Solution: Since $t e^{2 t}$ is a solution, this tells us that 2 is a double root. Now in order to find the characteristic equation, we just multiply $(r-2)^{2}=r^{2}-4 r+4$. So, the ODE is $y^{\prime \prime}-4 y^{\prime}+4 y=0$. The initial conditions are $y(0)=0, y^{\prime}(0)=1$.
14. What is the largest value of $\alpha>0$ such that any solution of $y^{\prime \prime}+4 y^{\prime}+\alpha y=0$ does not oscillate (does not have any terms of \sin , \cos).

Solution: The characteristic equation is given by $r^{2}+4 r+\alpha=0$. The roots are $\frac{-4 \pm \sqrt{16-4 \alpha}}{2}$ and this does not have any terms of sin, cos whenever $16-4 \alpha \geq 0$ or when $\alpha \leq \stackrel{2}{4}$. Therefore, the largest value is $\alpha=4$.

3 First Order Differential Equations

15. Solve the differential equations $\left(t^{3}+t^{2}\right) y^{\prime}=\frac{t^{2}+2 t+2}{2 y}$ with the initial condition $y(1)=1$.

Solution: This is first order but not linear so we use separable equations to get

$$
2 y d y=\frac{t^{2}+2 t+2}{t^{3}+t^{2}} d t
$$

We rewrite the right side using partial fractions $\left(t^{3}+t^{2}=t^{2}(t+1)\right)$ as $\frac{A}{t}+\frac{B}{t^{2}}+\frac{C}{t+1}$. Solving for A, B, C gives $A=0, B=2, C=1$ and integrating gives

$$
y^{2}=\int 2 y d y=\int \frac{t^{2}+2 t+2}{t^{3}+t^{2}} d t=\int \frac{2}{t^{2}}+\frac{1}{t+1} d t=\frac{-2}{t}+\ln |t+1|+C .
$$

Now we plug in our initial condition $y(1)=1$ to get $1=-2+\ln 2+C$ and $C=3-\ln 2$ so

$$
y=\sqrt{-2 / t+\ln |t+1|+3-\ln 2} .
$$

16. Consider the differential equation $t y^{\prime}+3 y=5 t^{2}$ with initial condition $y(1)=1$. Draw a slope field and then estimate $y(5)$ using a step size of $h=2$. Then solve for y explicitly and find the exact value of $y(5)$.

Solution: Moving things over, we get $y^{\prime}=5 t-3 y / t=f(t, y)$. Our initial condition is the point $\left(t_{0}, y_{0}\right)=(1,1)$. Then our next point has $t_{1}=1+h=3$ and $y_{1}=$ $y_{0}+h f\left(t_{0}, y_{0}\right)=1+2(5(1)-3(1 / 1))=5$. So we have the point $(3,5)$. Now to get the next point we have $t_{2}=t_{1}+h=5$ and $y_{2}=y_{1}+h f\left(t_{1}, y_{1}\right)=5+2(5(3)-3(5 / 3))=25$. So the next point is $(5,25)$ and $y(t)$ is about 25 .
To find the exact solution, we need to solve for y. This is a first order linear equation so we use integrating factors. To do this, we write it as $y^{\prime}+\frac{3}{t} y=5 t$. We multiply by the integrating factor which is $e^{\int 3 / t d t}=e^{3 \ln t}=t^{3}$ to get $t^{3} y^{\prime}+3 t^{2} y=5 t^{4}$. Integrating gives

$$
t^{3} y=\int\left(t^{3} y\right)^{\prime} d t=\int t^{3} y^{\prime}+3 t^{2} y d t=\int 5 t^{4} d t=t^{5}+C
$$

Thus, we have that $y=t^{2}+\frac{C}{t^{3}}$. Plugging in the initial condition $y(1)=1$ gives $1=1+C$ so $C=0$ and $y=t^{2}$ is the solution so $y(5)=25$.
17. For more Euler's method practice, see the Discussion 29 Worksheet.
18. Find all solutions to $e^{t} y^{\prime}=y^{2}+2 y+1$.

Solution: This is a separable equation because we can write $y^{\prime}=(y+1)^{2} e^{-t}$. This gives $\frac{d y}{(Y+1)^{2}}=e^{-t} d t$ so integrating gives $\frac{-1}{y+1}=-e^{-t}+C$ so $\frac{1}{y+1}=e^{-t}+C$. Therefore, solving gives $y=\frac{1}{e^{-t}+C}-1$. There is also a missing solution when we divided which was $y=-1$.
19. Find the solution of $y^{\prime}+\frac{y}{x}=e^{x} / x$ with $y(1)=0$.

Solution: The integrating factor is $e^{\int 1 / x d x}=e^{\ln x}=x$ and multiplying through gives us $x y^{\prime}+y=(x y)^{\prime}=e^{x}$. Now integrating gives $x y=e^{x}+C$ and hence $y=\frac{e^{x}}{x}+\frac{C}{x}$. Now solving for the initial condition gives us $0=\frac{e^{1}}{1}+\frac{C}{1}=e+C$. Hence $C=-e$ so $y=\frac{e^{x}}{x}-\frac{e}{x}$.
20. Find the solution to $r^{\prime}=r^{2} / t$ with $r(1)=1$.

Solution: Split it to get $\frac{d r}{r^{2}}=\frac{d t}{t}$ and now integrating gives $-1 / r=\ln t+C$ or $r=\frac{-1}{\ln t+C}$. Now we plug in the initial condition of $r(1)=1$ and since $\ln 1=0$, we have that $1=\frac{-1}{0+C}=\frac{-1}{C}$. Hence $C=-1$ and so the solution is $r(t)=\frac{-1}{-1+\ln t}$.
21. Find the general solution to $y^{\prime}+2 y / x=\sin (x) / x^{2}$.

Solution: This is linear so we want to use integrating factors. Let $I(x)=e^{\int \frac{2}{x} d x}=$ $e^{2 \ln x}=x^{2}$. Multiplying by x^{2}, we get $x^{2} y^{\prime}+2 x y=\sin (x)$. Now we integrate both sides to get $\left(x^{2} y\right)=-\cos (x)+C$ so $y=\frac{C-\cos (x)}{x^{2}}$.
22. Find the general solution of $y^{\prime}=2 t \sec y$.

Solution: Separating by dividing by $\sec y$ gives us $d y / \sec (y)=\cos (y) d y=2 t d t$. Now integrating gives $\sin (y)=t^{2}+C$ which is the general solution.
23. Find the general solution to $y^{\prime}-2 y / x=3 x^{3}$.

Solution: This is linear so we want to use integrating factors. Let $I(x)=e^{\int \frac{-2}{x} d x}=$ $e^{-2 \ln x}=x^{-2}$. Multiplying by $I(x)$ gives us $x^{-2} y^{\prime}-2 y / x^{3}=3 x$. Integrating both sides gives us $I(x) y=x^{-2} y=3 x^{2} / 2+C$ so $y=3 x^{4} / 2+C x^{2}$.

4 Matrices

24. True FALSE If A, B are square $n \times n$ matrices, then $A B=B A$.
25. True FALSE If A is a 2×2 matrix such that $A^{2}=I_{2}$, then $A=I_{2}$.
26. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=2 y_{1}(t)+y_{2}(t) \\
y_{2}^{\prime}(t)=y_{1}(t)+2 y_{2}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}=A \vec{y}$. The eigenvalues of A are given by $(2-\lambda)(2-\lambda)-1=\lambda^{2}-4 \lambda+3$ or $\lambda=1,3$. For $\lambda=1$, the eigenvector is $\binom{1}{-1}$ and for $\lambda=3$, the eigenvector is given by $\binom{1}{1}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{t} \vec{v}_{1}+c_{2} e^{3 t} \vec{v}_{2}=\binom{c_{1} e^{t}+c_{2} e^{3 t}}{-c_{1} e^{t}+c_{2} e^{3 t}} .
$$

27. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=y_{1}(t)+4 y_{2}(t) \\
y_{2}^{\prime}(t)=2 y_{1}(t)+3 y_{2}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}^{\prime}=A \vec{y}$. The eigenvalues of A are given by $(1-\lambda)(3-\lambda)-8=\lambda^{2}-4 \lambda-5$ or $\lambda=-1,5$. For $\lambda=-1$, the eigenvector is $\binom{-2}{1}$ and for $\lambda=5$, the eigenvector is given by $\binom{1}{1}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{-t} \vec{v}_{1}+c_{2} e^{5 t} \vec{v}_{2}=\binom{-2 c_{1} e^{-t}+c_{2} e^{5 t}}{c_{1} e^{-t}+c_{2} e^{5 t}} .
$$

28. Find the general solution to the systems of linear differential equations

$$
\left\{\begin{array}{l}
y_{1}^{\prime}(t)=-y_{1}(t)+3 y_{2}(t) \\
y_{2}^{\prime}(t)=2 y_{1}(t)
\end{array}\right.
$$

Solution: Let $A=\left(\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right)$. Then letting $\vec{y}=\binom{y_{1}(t)}{y_{2}(t)}$, we have that $\vec{y}^{\prime}=A \vec{y}$. The eigenvalues of A are given by $(-1-\lambda)(0-\lambda)-6=\lambda^{2}+\lambda-6$ or $\lambda=2,-3$. For $\lambda=-3$, the eigenvector is $\binom{-3}{2}$ and for $\lambda=2$, the eigenvector is given by $\binom{1}{1}$. Thus, the general solution is

$$
\vec{y}=c_{1} e^{2 t} \vec{v}_{1}+c_{2} e^{-3 t} \vec{v}_{2}=\binom{-3 c_{1} e^{2 t}+c_{2} e^{-3 t}}{2 c_{1} e^{2 t}+c_{2} e^{-3 t}} .
$$

29. Consider the following set of points: $\{(0,6),(1,3),(2,1),(3,0),(4,0)\}$. Find the line of best fit through these points and use it to estimate $y(0.5)$.

Solution: We can calculate the line $y=a x+b$ as $a=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{-15}{10}=\frac{-3}{2}$ and $b=\bar{y}-a \bar{x}=2-2(-3 / 2)=5$. So the line of best fit is $y=5-3 / 2 x$. We have $y(0.5) \approx 5-3 / 2(1 / 2)=5-3 / 4=4.25$.
30. Let $A=\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2\end{array}\right)$. Find A^{-1}.

Solution:

$$
A^{-1}=\left(\begin{array}{ccc}
2 & 0 & -1 \\
1 & 1 & -1 \\
-1 & 0 & 1
\end{array}\right)
$$

31. Let $A=\left(\begin{array}{ccc}3 & 4 & -1 \\ 4 & 2 & 1 \\ -2 & -3 & 1\end{array}\right)$. Find A^{-1}.

Solution: Use Gaussian elimination to get $A^{-1}=\left(\begin{array}{ccc}-5 & 1 & -6 \\ 6 & -1 & 7 \\ 8 & -1 & 10\end{array}\right)$.
32. Let A be the same as the previous problem. Solve $A \vec{x}=\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)$ (hint: use the previous problem to do this quickly).

Solution: The solution is $\vec{x}=A^{-1}\left(\begin{array}{c}1 \\ 4 \\ -1\end{array}\right)$ and we calculated A^{-1} in the previous problem to get $\vec{x}=\left(\begin{array}{c}5 \\ -5 \\ -6\end{array}\right)$.
33. Let $\vec{v}_{1}=\left(\begin{array}{c}3 \\ -2 \\ 2\end{array}\right), \vec{v}_{2}=\left(\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right), \vec{v}_{3}=\left(\begin{array}{c}-1 \\ 1 \\ -2\end{array}\right)$ and suppose that A is a 3×3 matrix such that $A \vec{v}_{1}=4 \overrightarrow{v_{1}}, A \vec{v}_{2}=\overrightarrow{0}, A \vec{v}_{3}=-\vec{v}_{3}$. What are the eigenvalues and eigenvectors of A ? What is the general solution to $\vec{y}^{\prime}(t)=A \vec{y}$ with $\vec{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$?

Solution: The eigenvalues are $4,0,-1$ with eigenvectors $\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}$ respectively. The general solution is $e^{4 t} \vec{v}_{1}+e^{0 t} \vec{v}_{2}+e^{-t} \vec{v}_{3}$.
34. Let A be a 2×2 matrix and suppose that $\vec{y}=\binom{3 e^{2 t}+4 e^{4 t}}{e^{4 t}-e^{2 t}}$ is a solution to $\vec{y}^{\prime}=A \vec{y}$. What are the eigenvalues and eigenvectors of A ? What is $A\binom{3}{-1}, A\binom{4}{1}$ and $A\binom{7}{0}$?

Solution: We write the solution as $e^{2 t}\binom{3}{-1}+e^{4 t}\binom{4}{1}$. Therefore, one eigenvalue is 2 with eigenvector $\binom{3}{-1}$ and the other is 4 with eigenvector $\binom{4}{1}$. Then $A\binom{3}{-1}=$ $2\binom{3}{-1}$ and $A\binom{4}{1}=4\binom{4}{1}$ and $A\binom{7}{0}$ is the sum.
35. Find the line of best fit through the points $\{(0,2),(1,3),(2,1)\}$.

Solution: We calculate $\bar{x}=1, \bar{y}=2$ and the line $y=a x+b$ is $a=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=$ $\frac{-1}{2}$ and $b=\bar{y}-a \bar{x}=2-1(-1 / 2)=2.5$. So the line of best fit is $y=2.5-x / 2$.
36. Write the differential equation $y^{\prime \prime}+5 y^{\prime}+6 y=0$ as a systems of differential equations with $y_{1}(t)=y(t), y_{2}(t)=y^{\prime}(t)$ and solve with $y(0)=2, y^{\prime}(0)=-5$.

Solution: We can write it as $y_{1}^{\prime}(t)=y_{2}(t)$ and $y_{2}^{\prime}(t)=-6 y_{1}(t)-5 y_{2}(t)$ so it is represented in the matrix $\left(\begin{array}{cc}0 & 1 \\ -6 & -5\end{array}\right)$. Solving gives us that $y_{1}(t)=y(t)=e^{-2 t}+e^{-3 t}$.

