Math 10A Worksheet, Final Review; Thursday, 8/9/2018 Instructor name: Roy Zhao

1 Review Topics

1.1 Differentiation

- Domain/Range of functions
- Function transformations (Draw f(2x+3))
- Limits
 - Infinite limits
 - L'Hopital's Rule
- Tangent Lines
 - Tangents to inverse functions
- Derivatives
 - Product Rule, Quotient Rule
 - Chain Rule
 - Implicit Differentiation
- Graphing Functions
 - Local extrema
 - Global extrema
 - Critical points
 - Concavity
 - Second Derivative Test
- Optimization
- Related Rates
- Taylor Series
- Newton's Method

1.2 Integration

- Antiderivatives
 - Fundamental Theorem of Calculus I and II
- Substitution Rule
- Integration by Parts
- Symmetry
- Numerical integration
 - Left/Right/Midpoint/Trapezoid/Simpson's Rule
 - Error Bounds
- Improper Integrals
 - Convergence Test
- Partial Fractions

1.3 Differential Equations

- Recurrence Relations
 - Going both forward and backward
 - Verifying solutions
- Identifying the adjectives (linear, homogeneous, etc.)
- Integrating Factors
- Separable Equations
- Second order differential equations
 - Going forward and backward
- IVPs/BVPs
- Slope fields
 - Euler's Method
 - Logistic Growth
- Linear systems of differential equations

1.4 Matrices

- Multiplying matrices, vectors
- Determinants
 - Number of solutions and how it depends on the determinant
- Gaussian Elimination
 - Finding Inverses
 - Solving matrix-vector equations
- Eigenvalues/eigenvectors
- Linear Regression
 - Least Squares Error
 - Finding line of best fit

2 Recurrence Relations and 2nd order Differential Equations

- 1. **TRUE** False It is possible for an IVP to have a unique solution.
- 2. **TRUE** False It is possible for a BVP to have a unique solution.
- 3. True **FALSE** It is possible for an IVP to have infinitely many solutions.
- 4. **TRUE** False It is possible for a BVP to have infinitely many solutions.
- 5. Solve the recursion equation $a_n = 2a_{n-2} a_{n-1}$ with the initial conditions $a_0 = 0, a_1 = 3$.

Solution: The characteristic equation is $\lambda^2 = 2 - \lambda$ or $\lambda^2 + \lambda - 2 = (\lambda + 2)(\lambda - 1) = 0$ so $\lambda = 1, -2$ are the roots. Therefore, the general solution is $c_1(1)^n + c_2(-2)^n$ or $c_1 + c_2(-2)^n$. The initial conditions give $c_1 + c_2 = 0$ and $c_1 - 2c_2 = 3$. Adding twice the first to the second gives $3c_1 = 3$ so $c_1 = 1, c_2 = -1$. Therefore, the solution is $1 - (-2)^n$.

6. Verify that $y_1(t) = t$ and $y_2(t) = t^3$ are solutions to the differential equation $t^2y''(t) - 3ty'(t) + 3y(t) = 0$. Find the solution to the differential equation with y(1) = 2 and y'(1) = 4 (hint: what kind of differential equation is this?).

Solution: We plug in t and t^3 and show that we get an equality. Since this is a homogeneous linear polynomial, linear combinations of solutions are also solutions so $c_1t + c_2t^3$ is the general solution. Plugging in the initial condition gives $c_1 + c_2 = 2$ and $c_1 + 3c_2 = 4$ so $c_1 = c_2 = 1$. Therefore, the solution is $y(t) = t + t^3$.

7. Find all solutions to the BVP y'' + 2y' + 5y = 0 with y(0) = 0 and $y(\pi) = 0$.

Solution: The characteristic equation is $\lambda^2 + 2\lambda + 5 = 0$ so the roots are $\lambda = -1 \pm 2i$. Therefore, the general solution is $c_1 e^{-t} \sin(2t) + c_2 e^{-t} \cos(2t)$. Now plugging in the initial conditions give $c_2 = 0$ and $c_2 e^{-\pi} = 0$ or $c_2 = 0$. Therefore, the solution is $y(t) = c_1 e^{-t} \sin(2t)$ and there are infinitely many solutions.

8. Find all solutions to the BVP y'' - 5y' + 6y = 0 with y(0) = 2 and $y(1) = e^2 + e^3$.

Solution: The characteristic equation is $\lambda^2 - 5\lambda + 6 = (\lambda - 2)(\lambda - 3) = 0$. So the roots are $\lambda = 2, 3$ and the general solution is $y(t) = c_1 e^{2t} + c_2 e^{3t}$. Plugging in the initial conditions give $c_1 + c_2 = 2$, $c_1 e^2 + c_2 e^3 = e^2 + e^3$ so $c_1 = c_2 = 1$. Therefore, the unique solution is $y(t) = e^{2t} + e^{3t}$.

9. Solve the initial value problem 3y'' + 18y' + 27y = 0 with y(0) = 0, y'(0) = 1.

Solution: We guess the solution is of the form $y = e^{rt}$. Plugging this in gives $3r^2e^{rt} + 18re^{rt} + 27e^{rt} = 23e^{rt}(r^2 + 3r + 9) = 0$ and hence $(r+3)^2 = 0$ so r = -3 is a double root. Therefore, the general solution is of the form $y = c_1e^{-3t} + c_2te^{-3t}$. Plugging in our initial conditions gives y(0) = 0 or $0 = c_1e^0 + c_2(0)(e^0) = c_1$ and $y(t) = c_2te^{-3t}$ and $y'(t) = c_2t(-3e^{-3t}) + c_2e^{-3t}$ and plugging in y'(0) = 1 gives $c_2(0) + c_2(1) = c_2 = 1$ so the solution is $y(t) = te^{-3t}$.

10. Solve the initial value problem given by 2y'' = 3y' - y and y(0) = 0 and y'(0) = 1.

Solution: We bring all the y's to one side and get 2y'' - 3y' + y = 0 and our characteristic equation is $2r^2 - 3r + 1 = (2r - 1)(r - 1) = 0$ so r = 1/2, 1. So the solution is of the form $y(t) = c_1 e^{t/2} + c_2 e^t$. Plugging in the initial conditions gives $y(0) = c_1 + c_2 = 0$ and $y'(0) = c_1/2 + c_2 = 1$ which solving gives $c_2 = 2$ and $c_1 = -2$. Therefore the solution is $y(t) = -2e^{t/2} + 2e^t$.

11. Find a second order differential equation IVP that has te^t as a solution.

Solution: Since te^t is a solution, the t in front tells us that there is a double root and the e^t tells us that $\lambda = 1$ is a root. Therefore, the roots are $\lambda = 1, 1$. So the characteristic equation is $(\lambda - 1)(\lambda - 1) = \lambda^2 - 2\lambda + 1 = 0$. So the differential equations is y'' - 2y' + y = 0. The conditions are $y(0) = 0e^0 = 0, y'(0) = te^t + e^t|_{t=0} = 0e^0 + e^0 = 1$.

12. Find a second order differential equation BVP that has $e^{2t}\sin(t)$ as a solution.

Solution: Since we have sin, we know that there are complex roots so the roots are $\lambda = a \pm bi$. The *a* is the exponent of e^{2t} so a = 2 and *b* is in the sin or cos so b = 1. Therefore, $\lambda = 2 \pm i$ are the roots. So the characteristic equation is $(\lambda - (2 - i))(\lambda - (2 + i)) = 0$ or $\lambda^2 - 4\lambda + 5 = 0$. Therefore, the differential equation is y'' - 4y' + 5y = 0.

The initial conditions is a boundary value so we could take $y(0) = e^0 \sin(0) = 0$ and $y(1) = e^2 \sin(1)$.

13. Find the second order linear ODE such that $y(t) = te^{2t}$ is a solution to it.

Solution: Since te^{2t} is a solution, this tells us that 2 is a double root. Now in order to find the characteristic equation, we just multiply $(r-2)^2 = r^2 - 4r + 4$. So, the ODE is y'' - 4y' + 4y = 0. The initial conditions are y(0) = 0, y'(0) = 1.

14. What is the largest value of $\alpha > 0$ such that any solution of $y'' + 4y' + \alpha y = 0$ does not oscillate (does not have any terms of sin, cos).

Solution: The characteristic equation is given by $r^2 + 4r + \alpha = 0$. The roots are $\frac{-4\pm\sqrt{16-4\alpha}}{2}$ and this does not have any terms of sin, cos whenever $16 - 4\alpha \ge 0$ or when $\alpha \le 4$. Therefore, the largest value is $\alpha = 4$.

3 First Order Differential Equations

15. Solve the differential equations $(t^3 + t^2)y' = \frac{t^2 + 2t + 2}{2y}$ with the initial condition y(1) = 1.

Solution: This is first order but not linear so we use separable equations to get

$$2ydy = \frac{t^2 + 2t + 2}{t^3 + t^2}dt$$

We rewrite the right side using partial fractions $(t^3 + t^2 = t^2(t+1))$ as $\frac{A}{t} + \frac{B}{t^2} + \frac{C}{t+1}$. Solving for A, B, C gives A = 0, B = 2, C = 1 and integrating gives

$$y^{2} = \int 2y dy = \int \frac{t^{2} + 2t + 2}{t^{3} + t^{2}} dt = \int \frac{2}{t^{2}} + \frac{1}{t+1} dt = \frac{-2}{t} + \ln|t+1| + C.$$

Now we plug in our initial condition y(1) = 1 to get $1 = -2 + \ln 2 + C$ and $C = 3 - \ln 2$ so

$$y = \sqrt{-2/t + \ln|t+1| + 3 - \ln 2}.$$

16. Consider the differential equation $ty' + 3y = 5t^2$ with initial condition y(1) = 1. Draw a slope field and then estimate y(5) using a step size of h = 2. Then solve for y explicitly and find the exact value of y(5).

Solution: Moving things over, we get y' = 5t - 3y/t = f(t, y). Our initial condition is the point $(t_0, y_0) = (1, 1)$. Then our next point has $t_1 = 1 + h = 3$ and $y_1 = y_0 + hf(t_0, y_0) = 1 + 2(5(1) - 3(1/1)) = 5$. So we have the point (3, 5). Now to get the next point we have $t_2 = t_1 + h = 5$ and $y_2 = y_1 + hf(t_1, y_1) = 5 + 2(5(3) - 3(5/3)) = 25$. So the next point is (5, 25) and y(t) is about 25.

To find the exact solution, we need to solve for y. This is a first order linear equation so we use integrating factors. To do this, we write it as $y' + \frac{3}{t}y = 5t$. We multiply by the integrating factor which is $e^{\int 3/tdt} = e^{3\ln t} = t^3$ to get $t^3y' + 3t^2y = 5t^4$. Integrating gives

$$t^{3}y = \int (t^{3}y)'dt = \int t^{3}y' + 3t^{2}ydt = \int 5t^{4}dt = t^{5} + C.$$

Thus, we have that $y = t^2 + \frac{C}{t^3}$. Plugging in the initial condition y(1) = 1 gives 1 = 1 + C so C = 0 and $y = t^2$ is the solution so y(5) = 25.

- 17. For more Euler's method practice, see the Discussion 29 Worksheet.
- 18. Find all solutions to $e^t y' = y^2 + 2y + 1$.

Solution: This is a separable equation because we can write $y' = (y+1)^2 e^{-t}$. This gives $\frac{dy}{(Y+1)^2} = e^{-t}dt$ so integrating gives $\frac{-1}{y+1} = -e^{-t}+C$ so $\frac{1}{y+1} = e^{-t}+C$. Therefore, solving gives $y = \frac{1}{e^{-t}+C} - 1$. There is also a missing solution when we divided which was y = -1.

19. Find the solution of $y' + \frac{y}{x} = e^x/x$ with y(1) = 0.

Solution: The integrating factor is $e^{\int 1/x dx} = e^{\ln x} = x$ and multiplying through gives us $xy' + y = (xy)' = e^x$. Now integrating gives $xy = e^x + C$ and hence $y = \frac{e^x}{x} + \frac{C}{x}$. Now solving for the initial condition gives us $0 = \frac{e^1}{1} + \frac{C}{1} = e + C$. Hence C = -e so $y = \frac{e^x}{x} - \frac{e}{x}$.

20. Find the solution to $r' = r^2/t$ with r(1) = 1.

Solution: Split it to get $\frac{dr}{r^2} = \frac{dt}{t}$ and now integrating gives $-1/r = \ln t + C$ or $r = \frac{-1}{\ln t + C}$. Now we plug in the initial condition of r(1) = 1 and since $\ln 1 = 0$, we have that $1 = \frac{-1}{0+C} = \frac{-1}{C}$. Hence C = -1 and so the solution is $r(t) = \frac{-1}{-1+\ln t}$.

21. Find the general solution to $y' + 2y/x = \sin(x)/x^2$.

Solution: This is linear so we want to use integrating factors. Let $I(x) = e^{\int \frac{2}{x} dx} = e^{2\ln x} = x^2$. Multiplying by x^2 , we get $x^2y' + 2xy = \sin(x)$. Now we integrate both sides to get $(x^2y) = -\cos(x) + C$ so $y = \frac{C-\cos(x)}{x^2}$.

22. Find the general solution of $y' = 2t \sec y$.

Solution: Separating by dividing by $\sec y$ gives us $dy / \sec(y) = \cos(y)dy = 2tdt$. Now integrating gives $\sin(y) = t^2 + C$ which is the general solution.

23. Find the general solution to $y' - 2y/x = 3x^3$.

Solution: This is linear so we want to use integrating factors. Let $I(x) = e^{\int \frac{-2}{x} dx} = e^{-2\ln x} = x^{-2}$. Multiplying by I(x) gives us $x^{-2}y' - 2y/x^3 = 3x$. Integrating both sides gives us $I(x)y = x^{-2}y = 3x^2/2 + C$ so $y = 3x^4/2 + Cx^2$.

4 Matrices

24. True **FALSE** If A, B are square $n \times n$ matrices, then AB = BA.

- 25. True **FALSE** If A is a 2×2 matrix such that $A^2 = I_2$, then $A = I_2$.
- 26. Find the general solution to the systems of linear differential equations

$$\begin{cases} y_1'(t) = 2y_1(t) + y_2(t) \\ y_2'(t) = y_1(t) + 2y_2(t) \end{cases}$$

Solution: Let $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$. Then letting $\vec{y} = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$, we have that $\vec{y'} = A\vec{y}$. The eigenvalues of A are given by $(2 - \lambda)(2 - \lambda) - 1 = \lambda^2 - 4\lambda + 3$ or $\lambda = 1, 3$. For $\lambda = 1$, the eigenvector is $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ and for $\lambda = 3$, the eigenvector is given by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Thus, the general solution is

$$\vec{y} = c_1 e^t \vec{v}_1 + c_2 e^{3t} \vec{v}_2 = \begin{pmatrix} c_1 e^t + c_2 e^{3t} \\ -c_1 e^t + c_2 e^{3t} \end{pmatrix}$$

27. Find the general solution to the systems of linear differential equations

$$\begin{cases} y_1'(t) = y_1(t) + 4y_2(t) \\ y_2'(t) = 2y_1(t) + 3y_2(t) \end{cases}$$

Solution: Let $A = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$. Then letting $\vec{y} = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$, we have that $\vec{y}' = A\vec{y}$. The eigenvalues of A are given by $(1 - \lambda)(3 - \lambda) - 8 = \lambda^2 - 4\lambda - 5$ or $\lambda = -1, 5$. For $\lambda = -1$, the eigenvector is $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ and for $\lambda = 5$, the eigenvector is given by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Thus, the general solution is

$$\vec{y} = c_1 e^{-t} \vec{v}_1 + c_2 e^{5t} \vec{v}_2 = \begin{pmatrix} -2c_1 e^{-t} + c_2 e^{5t} \\ c_1 e^{-t} + c_2 e^{5t} \end{pmatrix}$$

28. Find the general solution to the systems of linear differential equations

$$\begin{cases} y_1'(t) = -y_1(t) + 3y_2(t) \\ y_2'(t) = 2y_1(t) \end{cases}$$

Solution: Let $A = \begin{pmatrix} -1 & 3 \\ 2 & 0 \end{pmatrix}$. Then letting $\vec{y} = \begin{pmatrix} y_1(t) \\ y_2(t) \end{pmatrix}$, we have that $\vec{y}' = A\vec{y}$. The eigenvalues of A are given by $(-1 - \lambda)(0 - \lambda) - 6 = \lambda^2 + \lambda - 6$ or $\lambda = 2, -3$. For $\lambda = -3$, the eigenvector is $\begin{pmatrix} -3 \\ 2 \end{pmatrix}$ and for $\lambda = 2$, the eigenvector is given by $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$. Thus, the general solution is $\vec{y} = c_1 e^{2t} \vec{v}_1 + c_2 e^{-3t} \vec{v}_2 = \begin{pmatrix} -3c_1 e^{2t} + c_2 e^{-3t} \\ 2c_1 e^{2t} + c_2 e^{-3t} \end{pmatrix}$.

29. Consider the following set of points: $\{(0,6), (1,3), (2,1), (3,0), (4,0)\}$. Find the line of best fit through these points and use it to estimate y(0.5).

Solution: We can calculate the line y = ax + b as $a = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{-15}{10} = \frac{-3}{2}$ and $b = \bar{y} - a\bar{x} = 2 - 2(-3/2) = 5$. So the line of best fit is y = 5 - 3/2x. We have $y(0.5) \approx 5 - 3/2(1/2) = 5 - 3/4 = 4.25$.

30. Let
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$$
. Find A^{-1} .

Solution:

$$A^{-1} = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 1 & -1 \\ -1 & 0 & 1 \end{pmatrix}.$$

31. Let $A = \begin{pmatrix} 3 & 4 & -1 \\ 4 & 2 & 1 \\ -2 & -3 & 1 \end{pmatrix}$. Find A^{-1} .

Solution: Use Gaussian elimination to get $A^{-1} = \begin{pmatrix} -5 & 1 & -6 \\ 6 & -1 & 7 \\ 8 & -1 & 10 \end{pmatrix}$.

32. Let A be the same as the previous problem. Solve $A\vec{x} = \begin{pmatrix} 1\\ 4\\ -1 \end{pmatrix}$ (hint: use the previous problem to do this quickly).

Solution: The solution is $\vec{x} = A^{-1} \begin{pmatrix} 1 \\ 4 \\ -1 \end{pmatrix}$ and we calculated A^{-1} in the previous problem to get $\vec{x} = \begin{pmatrix} 5 \\ -5 \\ -6 \end{pmatrix}$.

33. Let $\vec{v}_1 = \begin{pmatrix} 3 \\ -2 \\ 2 \end{pmatrix}, \vec{v}_2 = \begin{pmatrix} -1 \\ -1 \\ 0 \end{pmatrix}, \vec{v}_3 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ and suppose that A is a 3×3 matrix such that $A\vec{v}_1 = 4\vec{v}_1, A\vec{v}_2 = \vec{0}, A\vec{v}_3 = -\vec{v}_3$. What are the eigenvalues and eigenvectors of A? What is the general solution to $\vec{y'}(t) = A\vec{y}$ with $\vec{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$?

Solution: The eigenvalues are 4, 0, -1 with eigenvectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$ respectively. The general solution is $e^{4t}\vec{v}_1 + e^{0t}\vec{v}_2 + e^{-t}\vec{v}_3$.

34. Let A be a 2 × 2 matrix and suppose that $\vec{y} = \begin{pmatrix} 3e^{2t} + 4e^{4t} \\ e^{4t} - e^{2t} \end{pmatrix}$ is a solution to $\vec{y}' = A\vec{y}$. What are the eigenvalues and eigenvectors of A? What is $A \begin{pmatrix} 3 \\ -1 \end{pmatrix}, A \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $A \begin{pmatrix} 7 \\ 0 \end{pmatrix}$?

Solution: We write the solution as $e^{2t} \begin{pmatrix} 3 \\ -1 \end{pmatrix} + e^{4t} \begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Therefore, one eigenvalue is 2 with eigenvector $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ and the other is 4 with eigenvector $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$. Then $A \begin{pmatrix} 3 \\ -1 \end{pmatrix} = 2 \begin{pmatrix} 3 \\ -1 \end{pmatrix}$ and $A \begin{pmatrix} 4 \\ 1 \end{pmatrix} = 4 \begin{pmatrix} 4 \\ 1 \end{pmatrix}$ and $A \begin{pmatrix} 7 \\ 0 \end{pmatrix}$ is the sum.

35. Find the line of best fit through the points $\{(0,2), (1,3), (2,1)\}$.

Solution: We calculate $\bar{x} = 1, \bar{y} = 2$ and the line y = ax + b is $a = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{-1}{2}$ and $b = \bar{y} - a\bar{x} = 2 - 1(-1/2) = 2.5$. So the line of best fit is y = 2.5 - x/2.

36. Write the differential equation y'' + 5y' + 6y = 0 as a systems of differential equations with $y_1(t) = y(t), y_2(t) = y'(t)$ and solve with y(0) = 2, y'(0) = -5.

Solution: We can write it as $y'_1(t) = y_2(t)$ and $y'_2(t) = -6y_1(t) - 5y_2(t)$ so it is represented in the matrix $\begin{pmatrix} 0 & 1 \\ -6 & -5 \end{pmatrix}$. Solving gives us that $y_1(t) = y(t) = e^{-2t} + e^{-3t}$.